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We study transport properties of weakly interacting one-dimensional electron systems including on an equal
footing thermal equilibration due to three-particle collisions and the effects of large-scale inhomogeneities. We
show that equilibration in an inhomogeneous quantum wire is characterized by the competition of interaction
processes which reduce the electrons total momentum and such which change the number of right- and
left-moving electrons. We find that the combined effect of interactions and inhomogeneities can dramatically
increase the resistance of the wire. In addition, we find that the interactions strongly affect the thermoelectric
properties of inhomogeneous wires and calculate their thermal conductance, thermopower, and Peltier
coefficient.
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I. INTRODUCTION

Transport properties of low-dimensional systems have
been subject of intensive research work over the last two
decades. One of the fundamental discoveries that has driven
the field was the observation of conductance quantization in
ballistic quantum wires and quantum point contacts.1,2 It was
found that conductance exhibits a staircaselike dependence
on the electron density with the universal step. The under-
standing of this phenomenon follows already from the
single-electron picture, which predicts for the conductance of
a one-dimensional single-channel clean wire,3

G =
2e2

h
. �1�

The physical origin of conductance plateaus at certain gate
voltages was associated with a fixed number of occupied
electronic subbands, each supplying one quantum of conduc-
tance 2e2 /h. Within the same approach of noninteracting par-
ticles both charge and energy are carried by electronic exci-
tations. This results in the universal relation between electric
and thermal conductances, known as the Wiedemann-Franz
law K= ��2 /3e2�TG. The thermal conductance of noninter-
acting electrons is thus

K =
2�2

3h
T . �2�

In addition to G and K two thermoelectric coefficients of the
electron gas are usually of great interest. These are ther-
mopower S, which relates an induced voltage drop across the
wire to applied temperature gradient, and Peltier coefficient
� connecting electric and heat currents. These two coeffi-
cients are connected by an Onsager relation �=ST. In the
absence of interactions the thermopower and Peltier coeffi-
cients are exponentially small,

� = ST � e−�/T �3�

at low temperatures T��. �Here � is the chemical poten-
tial.� The reason for such strong suppression of thermopower
and Peltier coefficients is the partial cancellation between

heat currents carried by particles with energies �+� and �
−�. Only the absence of electronic states below the bottom of
the band prevents � and S from vanishing exactly.

The remarkable success of the simple single-electron pic-
ture in describing the quantization of conductance and ex-
plaining the temperature dependence of thermoelectric coef-
ficients is attributed to the fact that quantum wires are always
connected to two-dimensional leads, where interactions be-
tween electrons do not play a significant role. Even though
the interactions in the wire are usually not weak, i.e.,
e2 /�vF	1, where vF is the Fermi velocity, it has been
shown within the so-called Luttinger-liquid model of one-
dimensional electrons that the interactions inside the wire do
not affect conductance quantization.4–6 It is no surprise then
that a number of recent experiments,7–15 that revealed devia-
tions from the perfect quantization, Eq. �1�, in low-density
wires, attracted a great deal of theoretical attention.16–22

These deviations often take the form of a shoulderlike fea-
ture, which develops at finite temperature just below the first
quantized plateau, around 0.7
2e2 /h. At present there is no
consensus on the theoretical interpretation of this phenom-
enon. However, it is generally accepted that electron-electron
interaction effects should be involved in explaining these ex-
perimental observations.

In a number of recent publications18–20,23–37 transport
properties of one-dimensional conductors were reconsidered
focusing on the physics which lies beyond an ideal
Luttinger-liquid model. In particular, when studying the tem-
perature dependence of the corresponding kinetic coeffi-
cients Refs. 31–39 emphasized one fundamental aspect of
interactions, namely, the role of physical processes that lead
to equilibration of electrons inside the wire. It should be
emphasized that equilibration is absent in an ideal Luttinger
liquid since bosonic elementary excitations of the latter have
infinite lifetime, thus there is no relaxation toward equilib-
rium in these systems, no matter how strong the interactions
are. In higher-dimensional systems equilibration at low tem-
peratures is primarily provided by pair collisions of elec-
trons. These, however, do not provide relaxation in one-
dimensional systems. This is due to the conservation laws for
momentum and energy which severely restrict the phase
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space available for scattering. As a result, pair collisions in
ideal one-dimensional wires can occur with a zero momen-
tum change or an interchange of the two momenta, leaving
the distribution function unaffected. The leading equilibra-
tion mechanism thus involves collisions of more than two
particles. For a weakly interacting system, it is then natural
to assume that equilibration is provided by three-particle
scattering processes.29–31 This, of course, also relies on the
additional assumption that other degrees of freedom, which
can absorb energy and momentum from electrons �phonons,
for example� can be ignored. This assumption is acceptable
in many cases since electron-phonon coupling constant is
typically much smaller than that due to the electron-electron
interactions.

In practice, long one-dimensional structures are strongly
prone to inhomogeneities inevitably present due to the
nearby gates or charged dopants underlying the wire. How-
ever, most preceding works studied effect of equilibration on
transport assuming uniform �clean� wires. The notable ex-
ceptions include Refs. 32 and 33 where smooth inhomoge-
neities were accounted for while assuming full equilibration
of the electronic system. The purpose of the present work is
to study effects of inhomogeneities on transport properties of
partially equilibrated quantum wires. We focus our attention
to the situation where the scale of inhomogeneities b is much
larger than the electron Fermi wavelength, b��F, such that
backscattering of electrons from the inhomogeneities is neg-
ligible. In this case only interactions �three-particle colli-
sions� may interrupt direct flow of the electron liquid and
convert �backscatter� some right-moving electrons into left-
moving ones.

Since nonuniform systems are no longer translationally
invariant, there is an additional scattering mechanism, which
can relax electron momentum without changing the number
of right- and left-moving particles.32,33 We find that equili-
bration due to three-particle collisions and inhomogeneity-
induced momentum-nonconserving scattering compete with
each other. An interplay between these two effects leads to a
very interesting picture of the electronic transport and results
in temperature-dependent corrections to the wire resistance
and thermoelectric coefficients.

The paper is organized as follows. In Sec. II we discuss
the general structure of the electron distribution function and
transport in a clean one-dimensional wire. We briefly men-
tion the resulting transport coefficients for this case, which
were recently reported in Ref. 35. In Sec. III we develop a
general formalism which enables us to treat equilibration of
the electron system due to three-particle collisions and
inhomogeneity-induced scattering on equal footing. The cen-
tral part of our work is Sec. IV where we apply this theory to
the calculation of transport coefficients in one-dimensional
inhomogeneous wires. From our general expressions we re-
cover the results known for the short and long uniform wires,
and also consider several experimentally relevant simple
models of inhomogeneous case. We summarize our results in
Sec. V. Supplementary appendices accompany some techni-
cal aspects of our calculations.

II. TRANSPORT IN UNIFORM QUANTUM WIRES

In the absence of interactions, left- and right-moving elec-
trons inside the wire are at equilibrium with the reservoir

they originated from. If a voltage bias V and/or temperature
difference 
T is applied between the reservoirs, then corre-
sponding equilibria differ from each other, giving rise to a
particular form of the nonequilibrium distribution function
inside the wire. This distribution depends on the direction of
motion of electrons and for the right- and left-moving par-
ticles is controlled, respectively, by the left and right lead,

fp =
��p�

e��p−�l�/Tl + 1
+

��− p�
e��p−�r�/Tr + 1

. �4�

Here �p= p2 /2m is the energy of an electron with momentum
p and ��p� is the unit step function. The difference between
the chemical potentials �temperatures� in the leads is equal to
the voltage �temperature difference� applied to the wire �l
−�r=eV �Tl−Tr=
T�. Using the distribution function �4� at

T=0 one can find electric current I=GV with the conduc-
tance of noninteracting electrons G= �2e2 /h��1+e−�/T�−1,
thus recovering, Eq. �1�, up to an exponentially small correc-
tion. The same distribution, Eq. �4�, provides thermal con-
ductance, Eq. �2�, and thermoelectric coefficients �=TS
= �� /e�e−�/T, consistent with Eq. �3�.

In the presence of interactions ballistic propagation of
electrons through the wire may be interrupted by collisions
with other electrons. As a result of these collisions, some
electrons change their direction of motion thus losing
memory of the lead they originated from. Such backscatter-
ing processes modify the electron distribution function which
is then no longer given by Eq. �4�. It is important to realize
that the effect of electron collisions on the distribution func-
tion depends strongly on the length of the wire. Indeed, elec-
trons traverse short wires relatively fast, such that interac-
tions do not have time to change distribution, Eq. �4�,
considerably. On the other hand, in the limit of very long
wire one should expect full equilibration of left- and right-
moving electrons into a single distribution, even in the case
of weak interactions.

For the Galilean invariant system one can easily infer the
electron distribution function in a fully equilibrated state.
Indeed, viewed from a reference frame moving with the drift
velocity vd= I /ne �where I is the electric current and n is the
electron density� the electron system is at rest and must be
described by the equilibrium Fermi distribution. Performing
a Galilean transformation back into the stationary frame of
reference this distribution takes the form,

fp =
1

e��p−vdp−�eq�/Teq + 1
, �5�

where the chemical potential �eq and temperature Teq inside
the equilibrated wire are, in general, different from �l�r� and
Tl�r�.

At zero temperature, T=Teq=0, the distributions, Eqs. �4�
and �5�, coincide, provided �l�r�=�eq�vdpF, where pF
=��n /2 is the Fermi momentum of the system. At nonzero
temperature the distribution function �5� of electrons inside
the equilibrated wire is slightly different from the distribu-
tion, Eq. �4�, supplied by the leads. The mismatch between
the two distribution functions results in additional resistance,
reducing the conductance of noninteracting electrons to34
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Geq =
2e2

h
�1 −

�2

12

T2

�2� . �6�

This result is universal since it was obtained without making
any specific assumptions regarding the process of equilibra-
tion. The corresponding derivation relied uniquely on the
analysis of conservation laws for energy, momentum, and
particle number. It is applicable as long as wire length L
exceeds certain equilibration length �eq such that the distri-
bution, Eq. �5�, is already established. The exact definition of
�eq is model specific and depends on the interaction between
electrons. Quite generically, however, it can be argued that
this length is exponentially large at low temperature �eq
�e�/T. The exponential scale can be understood from the
mechanism of equilibration35 which is also discussed later in
the text.

The thermal conductance of fully equilibrated wire is
zero,

Keq = 0. �7�

This result can be understood simply from the structure of
the distribution function �5�. One should recall that thermal
conductance is defined under the condition that electric cur-
rent I=envd vanishes. Thus vd=0 and the distribution, Eq.
�5�, takes the form of the standard Fermi-Dirac distribution.
Due to its symmetry p→−p the heat current carried by elec-
trons vanishes, regardless of the temperature bias 
T applied
to the wire. One therefore finds that in an infinitely long wire
the thermal conductance is zero. One should note, however,
that thermal conductivity is finite,35 i.e., at L→� the thermal
conductance scales as K�1 /L.

Unlike the electric and thermal conductances, ther-
mopower and Peltier coefficients are significantly enhanced
by equilibration effects. Specifically, � grows from the ex-
ponentially small value, Eq. �3�, for short wires L��eq to

�eq = TSeq =
�2

6e

T2

�
, �8�

in fully equilibrated �long� wires, L��eq.
A more careful treatment of the equilibration effects is

required in wires of intermediate length L��eq, where the
electron distribution function is only partially equilibrated.35

As we already mentioned, in the case of weakly interacting
electrons the leading mechanism of equilibration is provided
by three-particle collisions. At low temperatures one should
consider two types of such collisions. The strongest scatter-
ing events involve three particles near the Fermi level �for
example, one left mover that scatters off two right movers
such that all particles preserve their direction of motion�.
These collisions are relatively fast and the corresponding
scattering length �t scales as a power law of temperature.
However, these collisions alone cannot establish the distribu-
tion, Eq. �5�, since they conserve the number of right- and
left-moving particles. The other important three-particle col-
lisions involve backscattering of, say, a right-moving elec-
tron into a left-moving one. This backscattering occurs near
the bottom of the band and provides equilibration between
the chemical potentials of right and left movers, thus estab-
lishing the distribution, Eq. �5�. Since at low temperatures

the probability to find an empty state at the band bottom is
exponentially small, the corresponding relaxation process is
very slow, and equilibration length is large, �eq�e�/T.

Let us consider now a segment of the wire, whose length

L is small compared to the equilibration length �eq but large
as compared to �t, namely, �t�
L��eq. This condition im-
plies that typical electron with energy near the Fermi level
passes through the segment without backscattering so that
the distribution, Eq. �5�, cannot be established. On the other
hand, 
L is already sufficiently large for electrons to expe-
rience other multiple collisions which allow momentum and
energy exchange between right- and left-moving electrons.
Under these conditions, the electron distribution function in
the segment achieves a state of partial equilibration, in which
the numbers NL and NR of the right- and left-moving elec-
trons are conserved independently. The form of this distribu-
tion can be obtained from the general statistical mechanics
argument by maximizing the entropy of electrons while pre-
serving NL�R�, total energy and momentum of the system,35

fp =
��p�

e��p−up−�R�/T̄ + 1
+

��− p�

e��p−up−�L�/T̄ + 1
. �9�

Here T̄ is the effective temperature, parameter u has dimen-
sion of velocity and accounts for the conservation of momen-
tum in electron collisions, and �L�R� are the chemical poten-
tials of the left- and right-moving particles. The distribution,
Eq. �9�, smoothly interpolates between the regimes of no
equilibration, Eq. �4�, and that of full equilibration, Eq. �5�.
In the absence of temperature difference, 
T=0, the unper-
turbed distribution, Eq. �4�, is obtained from Eq. �9� by set-
ting u=0 and identifying the chemical potentials with those
in the leads: �R=�l and �L=�r. �Here and throughout the
paper we use l�r� to denote left �right� lead while L�R� de-
note left �right� movers.� The fully equilibrated distribution,
Eq. �5�, is obtained from Eq. �9� by setting 
�=�R−�L=0.
In this case the electric current is expressed as I=enu, which
identifies parameter u as the drift velocity vd. We should
emphasize here that since the distribution, Eq. �9�, is appli-
cable for the segment of the wire outlined above then all four

parameters T̄�x�, u�x�, and �L/R�x� defining fp are, in prin-
ciple, coordinate dependent.

The implications of the distribution, Eq. �9�, for the trans-
port coefficients of partially equilibrated clean wires were
discussed in Ref. 35. In the following we generalize the
above picture of electronic transport in one-dimensional
wires accounting for possible nonuniformities of the system.

III. TRANSPORT IN INHOMOGENEOUS QUANTUM
WIRES

A. Boltzmann equation

Consider an inhomogeneous quantum wire of length L,
connected by ideal reflectionless contacts to noninteracting
leads and biased by a small voltage V and/or temperature
difference 
T, see Fig. 1. If the spatial variations related to
inhomogeneities occur on a length scale b much larger than
the Fermi wavelength �F, electrons do not suffer any back-
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scattering. Since the physical picture of equilibration in one-
dimensional wire can be readily understood at the level of
weakly interacting electrons we restrict our attention to this
case and describe the system in the framework of kinetic
equation. In this case electron distribution function f�t ,x , p�
obeys the Boltzmann equation,

�t f + vp�xf − �xU�x��pf = I�f	 , �10�

where static potential U�x� accounts for inhomogeneities of
the wire and I�f	 conventionally stands for the collision in-
tegral. We are interested in the steady-state regime when dis-
tribution function f�t ,x , p� does not depend explicitly on
time, and thus set �t f =0. It will be also convenient to split
the distribution f�x , p� into two parts corresponding to the
right and left movers,

f�x,p� = ��p�fR�x,�p�x�� + ��− p�fL�x,�p�x�� , �11�

and express it as the function of energy �p�x�= p2 /2m
+U�x� for the given momentum p. Kinetic Eq. �10� should
be supplemented by the boundary conditions at the ends of
the wire that are controlled by the leads,

fR�l,�p�l�� =
1

e��p�l�−�l�/Tl + 1
, �12a�

fL�r,�p�r�� =
1

e��p�r�−�r�/Tr + 1
, �12b�

where �l=�+eV, �r=� and Tl=T+
T, Tr=T. �We use
shorthand notation for the distribution function of right mov-
ers at the left lead fR�l ,�p�l��= fR�x=0,�p�x=0�� and left
movers at the right lead fL�r ,�p�r��= fL�x=L ,�p�x=L��.� The
parametrization, Eq. �11�, is especially useful since owing to
the simple algebraic relation,

vp
� fR�L�

��

��

�x
−

�U

�x

� fR�L�

��

��

�p
= 0 �13�

the inhomogeneity-related term drops out from the left-hand
side of the kinetic equation, except for the residual contribu-
tion ��p��xU�x��fR�x ,U�x��− fL�x ,U�x��	 at p=0. For nonin-
teracting electrons the mismatch between distribution func-

tions fR/L�x ,U�x�� of right and left movers is exponentially
small at the bottom of the band. In addition, even this small
discontinuity is smeared by interelectron scattering respon-
sible for equilibration.35 It is thus safe to take fR�x ,�p�x��
= fL�x ,�p�x�� for p=0 and we get then instead of Eq. �10�,

��p�vp�xfR�x,�p�x�� + ��− p�vp�xfL�x,�p�x�� = I�f	 .

�14�

As the first step of our general analysis, we demonstrate
now with the help of kinetic Eq. �14� that deviations in elec-
tric and thermal conductances from their noninteracting val-
ues �Eqs. �1� and �2�� are ultimately related to the rate of

change in the number of say right-moving electrons ṄR and

heat exchange rate Q̇R between right movers and left movers.

B. Conservation laws

The rate of change in the number of right movers ṄR due
to electron collisions is obtained from the collision integral
I�f	 upon integration over positive momenta and wire
length,

ṄR =
2

h



0

L

dx

0

�

dpI�f	 , �15�

where the coefficient 2 stands for two spin projections. Ow-

ing to the Boltzmann equation �14� ṄR can be equivalently
presented in terms of the distribution function of right-
moving electrons as

ṄR =
2

h



0

L

dx

U�x�

�

d��xfR�x,�� . �16�

We can integrate this expression by parts by noticing that

�

�x



U�x�

�

d�fR�x,�� = 

U�x�

�

d��xfR�x,�� − fR�x,U��xU�x� ,

�17�

and approximating in the following the distribution function
of right movers by unity at the bottom of the band, which is
correct up to exponentially small terms at low temperatures
fR�x ,U��1−O�e−��−U�/T�. This would give then

ṄR = jR�r� − jR�l� +
2

h
�U�r� − U�l�� , �18�

where we used standard definition for the currents of right/
left movers,

jR/L�x� =
2

h



−�

+�

dp���p�vpf�x,�p� . �19�

In Eq. �18� the incoming current jR�l� of right movers at x
=0 is known since it is controlled by the distribution of non-
interacting electrons in the left lead, Eq. �11�. However, the
outgoing jR�r� is not known because the distribution function
of right movers varies along the wire as a result of scattering.
It is convenient to exclude this unknown from Eq. �18� by

N
R

�
QR
�

Tr

�r

Tl

�l

L

b

FIG. 1. �Color online� Inhomogeneous quantum wire connected
adiabatically to two-dimensional leads and biased by the small volt-
age �l−�r=eV and/or temperature difference Tl−Tr=
T. We as-
sume that the spatial scale b of the inhomogeneities is large com-
pared to the Fermi wavelength, and thus electrons do not experience
backscattering from inhomogeneities. In this case only three-
particle equilibration processes may interrupt the flow of right-
moving electrons and convert some right movers into left movers.

Wavy lines represent heat exchange Q̇R between right movers and
left movers.
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noticing that the total current j in the wire does not depend
on position due to the conservation of the number of elec-
trons and can be written as j= jR�r�+ jL�r�. This results in

ṄR = j − �jL�r� + jR�l�� +
2

h
�U�r� − U�l�� . �20�

The benefit of performing this step is that now both currents
jR�l� and jL�r� are controlled by the noninteracting leads
whose distribution functions are given by the boundary con-

ditions �Eq. �11��. Furthermore, since ṄR and j vanish in the
absence of applied bias, we can exclude the U-dependent
contribution from Eq. �20� by subtracting from it jL�r�
+ jR�l� �V=0


T=0= 2
h �U�r�−U�l��. This leads to

ṄR = j − �jR�l� − jR�l��V=0

T=0� . �21�

The difference between currents of right movers at the left
boundary with and without bias in Eq. �21� can be found
with the help of distribution function �11�. Indeed, after a
simple calculation

jR�l� − jR�l��V=0

T=0 =

2

h



0

�

dpvp�fR�l,�p�l�� − fR�l,�p�l���V=0

T=0	

=
2eV

h
,

valid up to corrections small as e−�/T, we find

2e2

h
V = I − eṄR, �22�

where I=ej. This result can be thought of as a generalization
of Landauer formula for interacting one-dimensional sys-

tems. In the noninteracting limit ṄR=0 and we recover G

= I /V=2e2 /h while a finite ṄR would lead to a change in the
conductance. Equation �22� was derived earlier for uniform
�clean� wires.34,35 We have shown here that it remains intact
even in the case of inhomogeneous wires.

We now repeat the above calculation for the rate of the

change of energy of the right movers ĖR induced by electron
collisions. The latter is obtained from the collision integral
I�f	 by multiplying it by �p and then integrating over posi-
tive momenta and the wire length,

ĖR =
2

h



0

L

dx

0

�

dp�pI�f	 . �23�

It can be equivalently rewritten in terms of fR�x ,�� by mak-
ing use of the Boltzmann equation �14�,

ĖR =
2

h



0

L

dx

U�x�

�

d���xfR�x,�� . �24�

After integration by parts, similar to Eq. �17�, one finds

ĖR = jE
R�r� − jE

R�l� +
1

h
�U2�r� − U2�l�� , �25�

where we used the usual definition for energy currents of
right/left movers,

jE
R/L�x� =

2

h



−�

+�

dp���p�vp�pf�x,�p� . �26�

Conservation of energy ensures that the energy current jE is
constant along the wire. By using it at the right end jE
= jE

R�r�+ jE
L�r�, we can exclude unknown jE

R�r� from Eq. �25�
in analogy with Eq. �20�. In addition, since ĖR=0 and jE

=0 without the bias, we subtract jE
L�r�+ jE

R�l� �V=0

T=0= 1

h �U2�r�
−U2�l�� to exclude the U-dependent contribution. This pro-
cedure gives for the rate of energy change,

ĖR = jE − �jE
R�l� − jE

R�l��V=0

T=0� . �27�

The energy current of right movers at the left end of the wire
is controlled by the noninteracting lead with known distribu-
tion function �11�. To linear order in V and 
T a simple
calculation gives us

jE
R�l� − jE

R�l��V=0

T=0 =

2

h



0

�

dpvp�p�fR�l,�p�l�� − fR�l,�p�l���V=0

T=0	

=
2eV�

h
+

2�2T
T

3h
. �28�

It is convenient to combine electric and energy currents into
the heat current,

jQ = jE − �j , �29�

for which we find from Eqs. �22� and �27�,

2�2

3h
T
T = jQ − Q̇R, �30�

where Q̇R= ĖR−�ṄR is the heat transferred into the right-
moving subsystem by electron collisions. As expected when

Q̇R=0 we recover from Eq. �30� the thermal conductance of

noninteracting electrons Eq. �2� while a nonvanishing Q̇R

results in an interaction-induced change in K. Equation �30�
was reported earlier for uniform wires34,35 and as it is shown
here remains valid even in the inhomogeneous case.

So far our basic equations �22� and �30� contain four un-
known entries: two response currents I and jQ due to applied

bias V and temperature difference 
T, and two rates ṄR and

Q̇R nonvanishing due to interactions. In the next sections we
demonstrate that all four quantities can be expressed in terms
of only two parameters u�x� and 
��x�=�R�x�−�L�x� which
enter the distribution function �9� of partially equilibrated
electrons. This would give us the closed set of equations that
relate �I , jQ	� �V ,
T	 and thus determine the transport co-
efficients of interest.

C. Currents I and jQ in the partially equilibrated wires

Electric and heat currents can be easily found knowing
the distribution function f�x , p� of electrons in the wire. As
we discussed in Sec. II for the partially equilibrated wire this
distribution is given by Eq. �9�. It is worth emphasizing that
for the inhomogeneous case all four parameters entering Eq.
�9�: velocity u, chemical potential of right- and left-moving
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electrons �R�L�, and effective temperature T̄, are, in principle,
coordinate dependent. Furthermore, the distribution, Eq. �9�,
does not apply to particles near the bottom of the band, for
�p��
mT, as explained later in the text �see also correspond-
ing discussions in Ref. 35�. This, however, does not cause
any extra difficulties since transport quantities of interest are
determined by the behavior of the distribution function near
the Fermi level.

By using the definition of the current, Eq. �19�, and dis-
tribution function �9� we obtain the electric current in the
partially equilibrated wire

I =
2e

h

��x� + en�x�u�x� . �31�

Notice here that although contributions to the current due to
the electron drift, en�x�u�x�, and partial equilibration be-
tween right and left movers, 2e
��x� /h, are individually co-
ordinate dependent, their sum must be constant along the
wire. This is a consequence of the particle number conserva-
tion.

Since the heat current jQ also does not depend on posi-
tion, it can be calculated at any point in the wire. In the
regions not too close to the leads the distribution function is
expected to have the partially equilibrated form �9�. Then
using expressions �19� and �26� for j and jE we obtain after
Sommerfeld expansion of the integrand to leading order in
T /��1,

jQ =
�2

6

T2

��x�
n�x�u�x� , �32�

where we introduced ��x�=�−U�x�. Since jQ is already pro-

portional to small u�V, we were able to replace T̄ with T
within the linear-response regime. Notice also that the par-
ticular combination n�x�u�x� /��x� defining heat current jQ
must be coordinate independent.

To make further progress we should elaborate on the ex-

pressions for the rates ṄR and Q̇R, whose explicit forms de-
pend on details of the equilibration mechanism. This can be
done following the idea suggested in Ref. 35 and we show

below how ṄR and Q̇R can be expressed through 
��x� and
u�x�.

D. Microscopic expressions for ṄR and Q̇R

First let us identify the leading backscattering mechanism

that contributes to ṄR. The most favorable collisions should
involve a maximal number of electronic states close to the
Fermi points. However, due to the conservation of total en-
ergy and momentum, collisions that change the number of
right and left movers cannot occur near the Fermi level only,
and have to involve states deep in the electron band. As was
pointed out in Ref. 31 the scattering process most important
in altering the current thus typically scatters two electrons
close to the Fermi points and one electron at the bottom of
the band, as schematically depicted in Fig. 2�a�. It is conve-
nient to think of this collision as a process in which a deep
hole, corresponding to the outgoing electron state, is back-

scattered by electron excitations close to the Fermi level.
These excitations are typically associated with a momentum
change �p�T /vF� pF due to Fermi blocking. Let us further-
more characterize this process by introducing three-particle
scattering rate 1 /�eee, which can be approximated by a con-
stant because the initial and final states both lie at the bottom
of the band. Since the sign of �p varies in a random fashion
from one collision to another the hole performs a Brownian
motion in momentum space. The corresponding diffusion co-
efficient B can be readily estimated. The typical change of
momentum of a hole over time t behaves as �
p�2�Bt. As
we assumed the hole changes its momentum by �T /vF once
during the time �eee, so we conclude that �
p�2

��T /vF�2t /�eee for t��eee and thus estimate

B �
T2

vF
2�eee

. �33�

The change 
ṄR in the number of right-moving electrons
over the time t��
p�2 /B for the segment of the wire 
x is
given by the rate t−1 times the number of deep holes suscep-
tible to be backscattered. The latter can be estimated from
the probability to find a left- or right-moving hole e−�L�R�/T

and the number of states 
p
x /h available within the typical
momentum range 
p�
mT of the backscattering processes
shown in Fig. 2�b�. Taking into account that the scattering of

left- and right-moving holes both contribute to ṄR, but with
opposite signs, one finally estimates


ṄR �
1

t
�
p
x

h
��e−�R/T − e−�L/T� � −


�
xB

h
mT3
e−�/T

�34�

with 
�=�R−�L. A careful calculation based on the kinetic
equation gives35

dṄR

dx
= −

2
��x�
h

e−��x�/T

�1�x�
, �1�x� =


8�mT3

B�x�
. �35�

The expression for the diffusion coefficient B is model spe-
cific. Our preliminary estimate gives B�T3 in the case of
Coulomb interaction.

We continue now with the calculation of the rate Q̇R,
which consists of two contributions,

p p p

� � �

�p �p �p
a) b) c)

FIG. 2. �Color online� �a� Dominant three-particle collision
which changes the number of right-moving electrons. �b� Equilibra-
tion mechanism, multistep backscattering of right mover into the
left mover. At low temperatures each step �p in momentum space is
on the order of �T /vF. �c� Energy-conserving two-particle scatter-
ing process that violates conservation of momentum. This process is
possible due to the presence of inhomogeneities.
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Q̇R = Q̇b
R + Q̇p

R. �36�

The first one Q̇b
R is related to the same backscattering events

that change the number of right movers ṄR. Exploring the
fact that both rates are caused by the same physical processes
it was shown in Refs. 34 and 35 that there is a relation

between ṄR and Q̇b
R, which we generalize here for the inho-

mogeneous case,

dQ̇b
R

dx
= − 2��x�

dṄR

dx
. �37�

The logic behind this equation is as follows. The backscatter-
ing processes transform the unperturbed distribution of elec-
trons into the partially equilibrated form �9� with nonvanish-
ing u�x�. The two distributions differ most prominently at
energies within �T of the Fermi level. One can thus assume

that all the right-moving electrons contributing to ṄR are
removed from the vicinity of the right Fermi point and
placed to the vicinity of the left one. Each such transfer
reduces the momentum of the system by 2pF. The other elec-
trons have to be scattered in the vicinities of the two Fermi
points to accommodate this momentum change. In the spe-
cial case of three-particle collisions, the transfer of electron
from the right Fermi point to the left one is accomplished in
a number of small steps with momentum change �p�T /vF,
and at each step one additional electron is scattered near each
of the two Fermi points, see Fig. 2�b�. As a result of the
rearrangement of electrons near the two Fermi points, the
local momentum change 2pF of the backscattered electrons
is distributed between the remaining right- and left-moving
electrons, i.e., �pR+�pL=2pF. Thus the energy of the re-
maining right movers increases by �ER=vF�pR whereas that
of the left movers decreases, �EL=−vF�pL. Then, the conser-
vation of energy requires �pR=�pL= pF. In the end, the en-
ergy balance for the right-moving electrons consists of a loss
of � due to the removal of one particle from the Fermi level
and a gain of �ER=vFpF=2� due to the redistribution of
momentum. As a result, for every right-moving electron that
changes direction, 
NR=−1, the right-movers energy in-

creases by an amount 
ER=�, so one concludes that ĖR=

−�ṄR or equivalently Q̇R=−2�ṄR. Equation �37� follows
from here naturally if one applies the same argument but for

the segment of wire 
x such that rates ṄR and Q̇R are ac-
counted per unit of length in the inhomogeneous wire.

The other contribution Q̇p
R to the heat transferred by right

movers in Eq. �36� is due to scattering processes that do not
conserve momentum, see Fig. 2�c� for illustration. These
two-body collisions are possible only in the inhomogeneous
case. They do not change the number of right-moving elec-
trons but do change their energy. It is expected that this rate

is proportional to the velocity u of the electron liquid, Q̇p
R

�u. Indeed, two-particle collisions of Fig. 2�c� involve a
right mover with momentum p� pF and a left mover with
momentum p�−pF. For these electrons the drift term pu
� � pFu in the distribution function �9� can be absorbed into

the temperature T̄, such that right movers can be considered

as being at an effective temperature TR� T̄�1+u /vF� while

left movers at temperature TL� T̄�1−u /vF�, to linear order in
u.33 According to the general principle of statistical mechan-
ics thermalization between these subsystems involves the en-
ergy flow from “warmer” right movers to “colder” left mov-
ers that is proportional to the difference in temperatures

between the two, Q̇p
R�TR−TL�u. An explicit microscopic

calculation of the rate Q̇p
R done in Appendix A gives

dQ̇p
R

dx
= − 2��x�

n�x�u�x�
�in�x�

. �38�

Here �in is a scattering length scale associated with these
momentum-nonconserving collisions, Fig. 2�c�,

�in
−1 =

��x�
16n�x�

T

��x�
, �39�

where the parameter

��x� = ���x�V0 − V2kF�x�

��vF�x�
��2

+ ��x� V0

��vF�x�
��2

+ ��x� V2kF�x�

��vF�x�
��2� �40�

is expressed through the zero momentum and 2kF Fourier
components of the electronic interaction potential V. The

complete rate Q̇R is thus given by the sum of Eqs. �37� and
�38� and we find

dQ̇R

dx
= − 2��x�

dṄR

dx
− 2��x�

n�x�u�x�
�in�x�

. �41�

One should make two important comments regarding this
result. First, the effect of inhomogeneity on resistivity of a
quantum wire was recently addressed in Refs. 32 and 33
assuming that electrons are fully equilibrated and thus de-
scribed by the distribution function �5�. This assumption re-
quires that three-body interaction processes which change
the number of right-moving electrons dominate over the
momentum-nonconserving scattering. However, in a situa-
tion where both interaction processes happen on a compa-
rable time scale the system is frustrated with a finite value of

��0 and thus u�vd= I /en so that electrons are described
by the distribution, Eq. �9�, which we used in our calcula-
tions.

To elucidate further the origin of the frustration it is im-
portant to emphasize that momentum-nonconserving scatter-
ing resists full equilibration of electrons into a single distri-
bution, Eq. �5�. These scattering processes reduce velocity u
and thus prevent complete relaxation of the difference in
chemical potentials 
�. Indeed, since the current I is fixed
by the external circuit then according to Eq. �31� decrease in
u implies increase in 
�. This effect is opposite to that of the
equilibration processes due to three-particle collisions which
tend to relax 
�.

Second, the correction to resistance of a nonuniform wire
was obtained in studies32,33 by calculating the rate of mo-

mentum change ṖR for right-moving electrons. Note, how-
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ever, that in an inhomogeneous system without translational
invariance momentum is not a good quantum number. In-
deed, the momentum change of right movers due to colli-
sions depends on position and thus, is not the same for elec-
trons inside the wire, where it was calculated,32,33 than that
�actual change� in the leads. Our present scheme is free from
this difficulty. As we show in the next section it is really the

rate Q̇R, computed from the well-defined energy exchange,
that is needed to determine the wire resistance and other
transport coefficients.

IV. TRANSPORT COEFFICIENTS

We are set now for the calculation of transport coefficients
in an inhomogeneous wire. Indeed, our basic equations �22�
and �30� provide electric I and heat jQ currents as the re-
sponse to the applied bias V and temperature difference 
T.

Interaction effects are captured by the rates ṄR and Q̇R in-
duced by particle collisions that encode change in the num-
ber of right-moving electrons and energy exchange between
right and left movers, respectively. These rates are defined by
Eqs. �35� and �41� which still contain the unknown differ-
ence between the chemical potentials of partially equilibrated
right and left movers 
��x� and flow velocity u�x�. Equa-
tions �31� and �32� are the final ingredients that allow to
establish the correspondence �V ,
T	� �I , jQ	 and thus find
transport coefficients of interest.

Technically one proceeds as follows. First, employing
conservation of currents �recall that I and jQ are constant
along the wire� one can express 
��x� and u�x� in terms of I
and jQ from Eqs. �31� and �32�. Second, one brings these

relations into Eqs. �35� and �41� to find the rates ṄR and Q̇R

in terms of I and jQ, which is possible to do in quadratures.
Finally, Eqs. �22� and �30� define the desired correspondence
�V ,
T	� �I , jQ	. Employing this procedure we find two in-
dependent linear equations,

2e2

h
V = I�1 + r1� −

6

�2ejQr1
�̄

T2 , �42�

2�2e

3h
T
T = ejQ�1 +

12

�2

r1�2 + �2

T2 � − 2Ir1�̄ , �43�

where we introduced the dimensionless parameter,

r1 = 

0

L dx

�1�x�
e−��x�/T, �44�

which quantifies the rate of three-particle processes that
change number of right-moving electrons �see Eq. �35��, as
well as the weighted chemical potentials along the wire,

�̄ =
1

r1



0

L dx

�1�x�
��x�e−��x�/T, �45�

�2 =
1

r1



0

L dx

�1�x�
�2�x�e−��x�/T, �46�

�2 = 

0

L dx

�in�x�
�2�x� . �47�

From Eqs. �42� and �43� we find the resistance

R =�V

I
�


T=0
=

h

2e2 �1 + r� , �48�

where

r = r1 −
r1

2�̄2

�2

12
T2 + r1�2 + �2

�49�

and Peltier coefficient

� =� jQ

I
�


T=0
=

�2T2

6e

r1�̄

�2

12
T2 + r1�2 + �2

. �50�

In addition we find the thermal conductance

K =� jQ


T
�

I=0
=

�4T3

18h

1

�2

12
T2 + r1�2 + �2

�51�

and thermopower

S = −� V


T
�

I=0
=

�2T

6e

r1�̄

�2

12
T2 + r1�2 + �2

. �52�

Predictably, the Peltier coefficient, Eq. �50�, and ther-
mopower, Eq. �52�, satisfy the Onsager relation �=ST.
Equations �48�–�52� are the main results of this paper. In the
following we analyze these general expressions for a few
modeling examples of inhomogeneities.

A. Uniform wire

First of all, we perform a consistency check for the case
of a uniform wire, recently studied in Ref. 35. In the homo-
geneous case U�x�→0 all quantities defining R, �, K, and S
become coordinate independent: �1�x�→�1 so that �2� �̄2

=�2 and r1→ �L /�1�e−�/T. At the same time �→0 which is a
consequence of momentum conservation: in a uniform wire
two-electron scattering processes, shown in Fig. 2�c�, are not
allowed. As a result, interaction-induced correction to the
wire resistance, Eq. �49�, reduces to

r =
r0r1

r0 + r1
, �53�

where r0=�2T2 /12�2. In order to establish a connection with
the notations of Ref. 35 we invert resistance, Eq. �48�, with r
taken from Eq. �49�, to get the conductance G=R−1 to lead-
ing order in T /��1 and find

G =
2e2

h
�1 −

�2

12

T2

�2

L

L + �eq
� , �54�

where following Ref. 35 we have introduced the equilibra-
tion length,

LEVCHENKO et al. PHYSICAL REVIEW B 82, 115413 �2010�

115413-8



�eq =
�2

12

T2

�2�1e�/T. �55�

This result shows that for a long wire L��eq the conduc-
tance saturates to its length independent value, which still
exhibits noticeable power-law correction in temperature,
�G=−�2e2 /h���2T2 /12�2�, already mentioned in Sec. II
�Eq. �6��. This saturation of conductance is expected since
the electronic system reaches full equilibrium. For short
wires, �1�L��eq, the interaction-induced correction to con-
ductance is exponentially small �G=−�2e2 /h��L /�1�e−�/T

and scales linearly with the length of the wire. It is worth
noting that Eq. �54� is only applicable to wires longer than
�1. This constraint comes from the approximations made
when deriving the rate of change for the right-moving elec-

trons ṄR in Eq. �35� �see Ref. 35 for details�.
The Peltier coefficient and thermopower of a uniform

wire follow from Eqs. �50� and �52�, and read

� = ST =
�2

6e

T2

�

L

L + �eq
. �56�

It shows that � grows from exponentially small values at
L��eq to �eq quoted in Eq. �8� at L��eq. The thermal con-
ductance behaves very differently though. One finds from
Eq. �51� in the uniform limit,

K =
2�2T

3h

�eq

L + �eq
. �57�

At L��eq one recovers the result, Eq. �2�, for noninteracting
wires, but as the length of the wire grows, K is suppressed as
1 /L and vanishes for fully equilibrated wires, see our earlier
discussion presented below Eq. �7�. Equations �56� and �57�
recover the corresponding results of Ref. 35.

B. Two wires in series

As the simplest prototype of nonuniform system we study
two uniform wires of lengths L1 and L2, with different den-
sities, connected in series with each other. We ignore here
small contribution to transport coefficients coming from �,
which is nonzero only in the near vicinity of the junction
between the wires and vanishes everywhere else. Applying
then Eqs. �45�–�47� to this setup we find for the interaction-
induced resistance, Eq. �49�,

r =
�2T2

12

L1

�1
2�eq

�1� +
L2

�2
2�eq

�2� + � 1

�1
−

1

�2
�2 L1L2

�eq
�1��eq

�2�

1 +
L1

�eq
�1� +

L2

�eq
�2�

�58�

with chemical potentials �i=�−Ui and equilibration lengths
�eq

�i�= ��2T2 /12�i
2��1

�i�e�i/T within each wire i=1,2. It is of
special interest to consider the limit when one wire is infi-
nitely long. Upon taking the limit L1→� the expression for
r reduces to

r →
�2T2

12�1
2 +

�2

12
� T

�1
−

T

�2
�2 L2

�eq
�2� . �59�

The first term of this formula corresponds to the residual
resistance of the first wire. It is independent of its length L1,
which is natural since in the limit L1→� electrons reach full
equilibration and the interaction-induced resistance should
saturate.34 The other contribution to the resistance in Eq. �59�
is due to the second wire, which, however, ceases to saturate
even when L2��eq

�2�. Thus it remains proportional to the wire
length L2 and could be much larger than the first term. The
absence of equilibration in the second wire is rather counter-
intuitive. This result forced us to reexamine more carefully
continuity equations for electric and heat currents. We have
found that it is not possible to match both I and jQ in the
wires while simultaneously imposing vanishing chemical-
potential difference 
� between right- and left-moving elec-
trons. Indeed, let us suppose that in the limit L1��eq

�1� and
L2��eq

�2� both wires are fully equilibrated so that 
�=0 in
each wire. The current conservation then becomes I
=en1vd1=en2vd2, where vd1,2 is the drift velocity within each
wire. According to Eq. �32� the heat current in this case can
be written as jQ1,2

= I��2 /6e��T2 /�1,2� and clearly jQ1� jQ2

since �1��2. The resolution of this controversy is possible
only if 
��0 at least within one wire even though its length
exceeds the corresponding equilibration length. In Appendix
B we rederived Eq. �58� relying on conservation laws only.

Other transport coefficients do not show dramatic changes
compared to a single uniform wire and their behavior follows
expectedly as a natural generalization of Eqs. �56� and �57�.
We find for the Peltier coefficient of two connected uniform
wires,

� =
�2T2

6e

L1

�1�eq
�1� +

L2

�2�eq
�2�

1 +
L1

�eq
�1� +

L2

�eq
�2�

. �60�

� saturates to �2T2 /6e�1�2� depending on which wire is
fully equilibrated. The thermal conductance is found to be

K =
2�2T

3h

1

1 +
L1

�eq
�1� +

L2

�eq
�2�

, �61�

which is natural generalization of Eq. �57�.

C. Wire with long-range disorder

We now study more generic models of a nonuniform wire.
We assume only that disorder variations happen on the large
spatial scale, kF

−1�b�L, and concentrate on the case �2

�T2. In this case the �2T2 /12 term in Eq. �49� can be ig-
nored, and the interaction-induced resistance of the wire r
can be written as

r = r1
r1��2 + �2

r1�̄2 + �2 , �62�

where we introduced ��2=�2− �̄2. Expression �62� is appli-
cable to any realization of long-range disorder potential. We

TRANSPORT IN PARTIALLY EQUILIBRATED… PHYSICAL REVIEW B 82, 115413 �2010�

115413-9



now apply it to two special cases which allow simple ana-
lytical solution.

1. Weak disorder

First, let us assume that amplitude U0 of variations in the
inhomogeneity potential along the wire is small, U0�T. It
turns out that Eq. �62� covers three distinct regimes depend-
ing on the temperature. At lowest temperatures T�T1, where

T1 �
�

2 ln� V0

�vF
kFb

�

U0
� , �63�

three-particle equilibration processes are weak due to expo-
nential suppression e−�/T of the scattering near bottom of the
band.40 In this regime r1��2�r1�̄2��2 and the resistance of
the wire, Eq. �62�, is given by r1. It then follows from Eq.
�44� that to leading order in U0�T,

r = �1L, �1 =
1

�1
e−�/T, T � T1, �64�

where �1 has the meaning of dimensionless resistivity of the
wire. It is interesting to compare this result with Eq. �54�
obtained for a uniform wire. In the limit L��eq using Eqs.
�48� and �55� we extract from Eq. �54� the correction to
resistance r= �L /�1�e−�/T which coincides with Eq. �64�.
However, there is an important difference in the applicability
of this result to uniform and disordered wires. In the case of
uniform wires r= �L /�1�e−�/T applies only in the short wire
limit L��eq or equivalently at temperatures T�T1

�

=� / ln�L /�1�. For longer wires r saturates to the length-
independent value r=�2T2 /12�2, and thus always remains
smaller than contact resistance, r�1. In contrast, in the case
of disordered wires the result, Eq. �64�, does not rely on the
assumption that L��eq. The crossover temperature, Eq. �63�,
is controlled by disorder and does not depend on L. Thus,
although the resistivity �1 is small, for a sufficiently long
wire the total resistance r=�1L can be large, r�1.

At higher temperatures T�T1 �strong equilibration� the
resistance is given by the sum of two terms,

r = r1
��2

�̄2 +
�2

�̄2 . �65�

The contribution of the momentum-nonconserving two-body
collisions induced by disorder, the second term in Eq. �65�,
dominates in the temperature regime T1�T�T2, where

T2 �
�

2 ln� V0

�vF
kFb� . �66�

In this case the resistance of the wire is given by32,33

r = �2L, �2 =
���
16n

T

�
, T1 � T � T2. �67�

Here we used Eqs. �39� and �47�, set �̄2= �̄2=�2 to the lead-
ing order in U0�T, and �¯ �=�0

L dx
L �¯ � implies averaging

along the wire. In Refs. 32 and 33 the same result for resis-

tivity was derived assuming that electrons are fully equili-
brated. Here we find that in fact applicability conditions for
�2 are more strict and Eq. �67� dominates only in the tem-
perature range T1�T�T2. At higher temperatures the resis-
tance is governed by the first term in Eq. �65�,

r = �3L, �3 =
�4T3

18h�4

���2�
�

, T2 � T � � , �68�

where ���2�= �U2� since ��x�=�−U�x�. In Eq. �68� we in-
troduced thermal conductivity of a wire �= �2�2T /3h��eq.
Indeed, according to Eq. �57� for long wires, L��eq, we
have K=� /L.

Equation �68� shows that resistance r is determined by the
magnitude of the disorder potential rather than its gradients.
Similar to the case of two wires in series, considered in Sec.
IV B, this feature can be traced back to the fact that in the
inhomogeneous wire electrons never reach full equilibration
no matter how long the wire is. It is also interesting to note
that resistance of the wire in the regime of strong equilibra-
tion �Eq. �68�� can be understood from purely hydrodynamic
considerations.41

2. Strong disorder

We now relax the assumption of small variations in the
amplitude of U�x�. Consider the case when generally smooth
profile of the inhomogeneity potential has a well-defined
maximum U0�T at some point x0 inside the wire, see Fig. 3.
We assume that such strong fluctuation of U�x� happens in
only one place along the wire. This situation is likely to
occur in practice due to the presence of charged impurities in
the substrate and/or uneven screening of the nearby gates.

Since e−��x�/T is largest near x0 and dṄR /dx�e−��x�/T, see
Eq. �35�, it is natural to expect that three-particle equilibra-
tion processes are significantly enhanced in the part of the
wire where U�x� reaches its maximum. Thus this region of
the wire gives dominant contribution to resistance at lowest
temperatures when �2�r1�̄2�r1��2. Assuming smoothness
of �1�x� at x�x0 as compared to the sharp e−��x�/T we can
compute the resistance r=r1 by applying the saddle point
approximation to Eq. �44�,

U l( )
U r( )

U0

x0
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ef

t
le

ad

R
ig

h
t
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�

p
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�
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�p
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�
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FIG. 3. �Color online� Enhanced equilibration due to three-
particle collisions in the wire segment of length �T where the inho-
mogeneity potential is maximal. A larger value of e−��x�/T near x
�x0 favors stronger electron backscattering in accordance with Eq.
�35�. In contrast, momentum-nonconserving two-particle collisions
occur throughout the wire.
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r =
�T

�1
e−�0/T, �T =
 2�T

�U��x0��
. �69�

Here �0=�−U�x0�, �1=�1�x0�, and �T is the thermal length
associated with the curvature of the potential U�x� near x0.

In contrast to the equilibration processes, dominated by
scattering near x0, momentum-nonconserving two-particle
collisions occur throughout the wire. Resistance of the wire
is controlled by the latter at intermediate temperatures when
r1�̄2��2�r1��2. For this regime

r =
TL

16�0
2���x���x�

n�x� � , �70�

which is analogous to Eq. �67�. The only difference is that
due to strong variations in U�x� spatial averaging in Eq. �70�
involves not only ��x�.

At higher temperatures, when r1�̄2�r1��2��2, resis-
tance is again dominated by the scattering processes near the
top of the inhomogeneity potential. In this regime the first
term in Eq. �65�, determined by the amplitude fluctuations of
U�x� rather than its gradient, gives the leading contribution,

r =
�2

24

T4

�0
4

�T

�eq�x0�
. �71�

Here we used ��2 / �̄2=T2 /2�0
2 found within saddle-point

approximation from Eqs. �45� and �46� to leading order in
T /�0�1. Equation �71� is analogous to Eq. �68� with the
thermal length �T effectively playing the role of the system
size.

V. SUMMARY

In this paper we studied the transport properties of weakly
interacting one-dimensional electrons in the presence of in-
homogeneities. In this system equilibration is strongly re-
stricted by the phase space available for electron scattering
and conservation laws. The resulting equilibration length
�eq�e�/T is exponentially large at low temperatures and the
partially equilibrated state is more likely to be realized than
the fully equilibrated one. Furthermore, inhomogeneities
present in the wire themselves resist equilibration of elec-
trons due to momentum-nonconserving two-particle colli-
sions.

Our main results are expressions �48�–�52� for the resis-
tance, Peltier coefficient, thermal conductance and ther-
mopower. We find that the combined effect of interactions
and inhomogeneities can dramatically increase the resistance
of the wire. For the long enough wire the induced correction
could be much greater than the contact resistance of nonin-
teracting electrons h /2e2. This is in contrast to the uniform
case where interaction-induced correction to resistance satu-
rates for L��eq and remains small as �T /��2 compared to
the resistance h /2e2 of a noninteracting wire.

The combined effect of interactions and inhomogeneities
is different for thermoelectric coefficients. On the one hand,
when temperature increases, Peltier coefficient and ther-
mopower grow from exponentially small values, Eq. �3�, to
�=TS���2T2 /6e���̄ /�2�. On the other, this enhancement

is not as dramatic as in the case of resistance. Indeed, the
difference between the saturated values of Peltier coefficient
and thermopower in inhomogeneous wire as compared to
that in the uniform wires is only in the appearance of the
renormalized factor �̄ /�2 instead of the inverse chemical
potential 1 /�, see Eq. �8�. Conversely, the thermal conduc-
tance of the wire decreases due to the equilibration from its
noninteracting value, Eq. �2�, to zero at L��eq.

The lack of complete electronic equilibration in the inho-
mogeneous quantum wires, which is another central obser-
vation of our work, warrants additional discussion. The no-
tion of equilibration appears naturally since initially right-
and left-moving electrons entering the wire from the left and
right lead, respectively, are at different equilibria with re-
spect to each other due to the applied bias or temperature
difference. In the case of weak interactions three-particle col-
lisions constitute the leading-order relaxation process. Al-
though the corresponding relaxation rate is slow �or equiva-
lently relaxation length is large� due to the required
scattering through the bottom of the band, complete equili-
bration between the right and left movers is nevertheless pos-
sible in a homogeneous wire. Once the length of the wire
becomes large such that exponential suppression of the
equilibration effects is compensated by a large system size,
L��eq�e�/T, the relaxation of the electron system becomes
significant. Right and left movers eventually equilibrate to
the single distribution, Eq. �5�. When viewed in a reference
frame moving together with electrons this distribution is sim-
ply the equilibrium Fermi function. Thus, in the stationary
frame this is distribution with a boost.

In the presence of spatial inhomogeneities full equilibra-
tion is impeded. This is most transparent when momentum-
nonconserving two-body collisions are present, which unlike
three-particle processes favor electron distribution function
without boost, Eq. �4�. As a result, the electron system is
frustrated due to competition between two scattering pro-
cesses and an intermediate distribution, Eq. �9�, is estab-
lished.

Interestingly, lack of full equilibration is a more general
characteristic of inhomogeneous quantum wires, which is a
consequence of conservation laws. More precisely, in inho-
mogeneous wires it is generally not possible to reconcile full
equilibration with conservation of energy. Technically speak-
ing, this observation comes from the fact that in the fully
equilibrated state all currents are proportional to the drift
velocity. In the linear-response regime one therefore has only
a single parameter vd to simultaneously satisfy uniformity of
particle and heat currents along the wire, imposed by conser-
vation laws. In inhomogeneous wires this is generally not
possible since for 
�=0 the ratio jQ / I=�2T2 /6e��x� is not
constant along the wire. Thus the electron liquid must remain
in the state of partial equilibration with 
��0. We have
illustrated this point explicitly by considering the simplest
example of inhomogeneity, namely, a junction of two uni-
form wires with mismatched densities. In the general case of
a wire with long-range disorder the consequence of the par-
tially equilibrated state is that interaction-induced correction
to resistance of the wire is determined by the amplitude of
the variations in inhomogeneity potential, rather than its gra-
dients. This correction may be large compared to the resis-
tance h /2e2 of noninteracting wires.

TRANSPORT IN PARTIALLY EQUILIBRATED… PHYSICAL REVIEW B 82, 115413 �2010�

115413-11



ACKNOWLEDGMENTS

We are grateful to B. L. Altshuler, A. V. Andreev, A. P.
Dmitriev, Y. M. Galperin, I. V. Gornyi, D. G. Polyakov, and
B. Shklovskii for helpful discussions. This work at ANL was
supported by the U.S. Department of Energy, Office of Sci-
ence, under Contract No. DE-AC02-06CH11357.

APPENDIX A: DETAILS ON THE CALCULATION OF Q̇p
R

For the inhomogeneous wire we describe the electron-
electron interaction responsible for two-body scattering by
its general translationally noninvariant form,

V�x,x�� ⇒ V�x − x�,
x + x�

2
� . �A1�

As a function of its first argument V is assumed to be Cou-
lombic in nature and thus short ranged with variations on the
scale of a certain screening length due to the nearby gates.
The inhomogeneity is captured by the second argument with
a corresponding variations in V on the length scale b, large
compared to both, the Fermi wavelength �F and the range of
screening. Our starting point for the energy-transfer rate
from the right movers for the segment of the wire �vF /T
�
x�b is the following golden-rule expression,


Q̇p
R�x� = −

2�

�

 d�pd�p�d�kd�k�

�2��4 �V��p,�k;�p�,�k���
2


���p + �k − �p� − �k����p − �p� + �k� − �k�


�fR��p��1 − fR��p���fL��k��1 − fL��k���

− fR��p���1 − fR��p��fL��k���1 − fL��k��	 , �A2�

where the matrix element

�V�2 = �V��2 + �V1��2 + �V2��2, �A3�

includes three possible scattering processes of spinfull elec-
trons from the initial state ��p ,�k� into the final state
��p� ,�k��. These matrix elements will be calculated on the
basis of semiclassical wave functions,

��,��x� =
1


�vF�x�
exp��

i

�



0

x

dx�
2m�� − U�x��� ,

�A4�

which are eigenstates of the free Hamiltonian �−�2�x
2 /2m

+U�x�����x�=����x� normalized according to
�dx��,��x����,�

� �x�=2����−��� and v��x�= p��x� /m. The
subscripts � refer to the right/left branches and we also ig-
nored the backscattering wave since it only leads to an ex-
ponentially small contribution for kFb�1. Focusing on the
states close to the Fermi energy, we can simplify the expres-
sion for the eigenstates, Eq. �A4�, of the free Hamiltonian
into

��,��x� � ��,��x�exp��i�� − ��

0

x dx�

�vF�x��� , �A5�

where ��,��x� is obtained from Eq. �A4� by setting �=�.
This allows us to find, for example, the matrix element V� to
first order in the interaction,

V���p,�k;�p�,�k��

= 

x

x+
x

dX

exp�i

0

X

dx�
�p� − �p + �k − �k�

�vF�x�� �
��vF�X��2




−
x


x

dyV�y,X��1 − e−2ikF�X�y� . �A6�

Here we introduced center of mass X= �x+x�� /2 and relative
y=x−x� coordinates, and kF�X�= pF�X� /�.

Using Eq. �9� and expanding the occupation factors
fR/L��� in Eq. �A2� to linear order in u�x�, and splitting the
energy-conserving delta function into two as �d����p−�p�
−�����k−�k�+��, we can complete �p� and �k� integrations
and find


Q̇p�
R �x� = −

2�Tu�x�
�vF�x� 
 d�d�pd�k

�2��4 �V�����2
4�2

T2 f��p�


�1 − f��p − ���f��k��1 − f��k + ��� , �A7�

where f��� is now the equilibrium Fermi function. The cor-
responding matrix element in these notations reads

V���� = 

x

x+
x

dX
V0�X� − V2kF

�X�

��vF�X��2


exp�− 2i�

0

X dx�

�vF�x��� . �A8�

The shortened forms V0 and V2kF
correspond to the zero mo-

mentum and 2kF Fourier components of the potential V�y ,X�
with respect to its first variable y defined as V0�X�
=�dyV�y ,X� and V2kF

�X�=�dyV�y ,X�e−2ikF�X�y. At this stage
�p and �k integrations can be completed by noticing that

f����1 − f�� � ��� =
f��� − f�� � ��

1 − e��/T ,



−�

+�

d��f��� − f�� � ��� = � � . �A9�

As a result, we obtain following expression for the energy-
transfer rate:
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Q̇p�
R �x� = −

Tu�x�
8��vF�x�
 


x

x+
x

dX1dX2�V0�X1� − V2kF
�X1�

��vF�X1�
�


�V0�X2� − V2kF
�X2�

��vF�X2�
�


−�

+�

d�� �2/T

sinh
�

2T
�

2




exp�− 2i�

X1

X2 dx�

�vF�x���
�vF�X1��vF�X2�

. �A10�

Being interested in the temperature range T��vF /b, where
the exponential is rapidly oscillating, we write

4�2

�vF�X1��vF�X2�
exp�− 2i�


X1

X2 dx�

�vF�x���
=

�2

�X1 � X2
exp�− 2i�


X1

X2 dx�

�vF�x��� , �A11�

integrate by parts over X1 and X2 and complete the remaining
energy integral, which gives 4��vF�x���X1−X2�. Due to the
delta function, one spatial integration is thus removed and
we find as the final result, Eq. �38�–�40�, where all three
scattering channels were included.

APPENDIX B: SERIES RESISTANCE OF TWO UNIFORM
WIRES FROM THE CONSERVATION LAWS

The resistance of a junction between two uniform wires
with different densities can be found simply by combining
conservation laws for the currents with the microscopic

equations for ṄR and Q̇R. Our starting point is Eq. �22� which
is naturally generalized to the case of two wires connected in
series,

2e2V

h
= I − eṄ1

R − eṄ2
R, �B1�

where Ṅ1,2
R correspond to the change in the number of right

movers within each segment of the wire. Similarly, generali-
zation of Eq. �30� for the heat balance reads

2�2T
T

3h
= jQ − Q̇1

R − Q̇2
R. �B2�

Equation �B1� defines the resistance, Eq. �48�, where
interaction-induced correction is given by

r = −
eṄ1

R

I
−

eṄ2
R

I
. �B3�

We use now Eq. �35� in the limit of uniform wires to express
rates Ṅ1,2

R as

eṄi
R = − I�1 − �i�

Li

�i
, �i = �1

�i�e�i/T, i = 1,2, �B4�

by introducing the new quantity �i=ui /vd, which has mean-
ing of the degree of equilibration. Indeed, �=0 corresponds
to the limit of no equilibration, such that the current is de-
termined solely by 
�, while �=1 corresponds to full equili-
bration where I=envd. This notation makes it possible to
express 
�i in Eq. �31� in terms of �i as I=2e
�i /h+�iI,
which was used in Eq. �B4�.

Conservation of the heat current, Eq. �32�,

ejQ =
�2

6

T2

�1
�1I =

�2

6

T2

�2
�2I �B5�

imposes a constraint �1 /�1=�2 /�2��, which must be con-
stant. With the help of Eq. �B4� the expression for r in Eq.
�B3� can be rewritten as

r =
L1

�1
+

L2

�2
− ���1

L1

�1
+ �2

L2

�2
� . �B6�

where the unknown quantity � is yet to be determined. The
way to find it is from the energy conservation. Recall, that

Q̇R and ṄR are related to each other by Eq. �37� since they
are caused by the same scattering mechanism. For the uni-

form wire Eq. �37� reads Q̇i
R=−2�iṄi

R. As a result, for Eq.
�B2� in the case of no temperature bias �
T=0� we have

jQ + 2�1Ṅ1
R + 2�2Ṅ2

R = 0. �B7�

Inserting here Eqs. �B4� and �B5� one finds

�2

6
T2� − 2�1�1 − ��1�

L1

�1
− 2�2�1 − ��2�

L2

�2
= 0, �B8�

which allows to find � explicitly,

� =

2�1
L1

�1
+ 2�2

L2

�2

�2T2

6
+ 2�1

2L1

�1
+ 2�2

2L2

�2

. �B9�

Finally, using this � in Eq. �B6� and reexpressing � through
the equilibration length as �i= �12�i

2 /�2T2��eq
�i� one recovers

Eq. �58�. We thus conclude that Eq. �58� is just a conse-
quence of the conservation laws.
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